Adaptive Test Recommendation for Mastery Learning

Nassim Bouarour, Idir Benouaret*, Cedric d'Ham, Sihem Amer-Yahia

CNRS, Univ Grenoble Alpes *Epita Research Laboratory

2nd International Workshop on Data Systems Education Seattle, WA, USA

23-06-2023

Mastery Learning

- Mastery learning advocates assigning tests to learners with the goal of mastering a target difficulty level for a given skill.
- The goal is to **minimize** the **learning gaps** that learners incur if they fail at assigned tests.

Pelánek, R., & Řihák, J. (2017, July). Experimental analysis of mastery learning criteria. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 156-163).

Example

Difficulty	0.7
Correct	1
No Gap	
Skill Updated	

Goal and Challenges

Goal: an approach that assigns a **sequence of tests** to a learner to maximize their skill acquisition and minimize their skill gap.

Challenges:

- O How to determine suitable tests to assign to the learner?
- How to leverage previous failures to improve learning?
- When to consider the learning **completed**?
- How to validate the learning process?

Learning Theories: Zone of Proximal Flow

L. S. Vygotsky. 1980. Mind in society: The development of higher psychological processes. Harvard university press.

M. Csikszentmihalyi. 1975. **Beyond boredom and anxiety: The experience of play in work and games**. Jossey-Bass.

Mastery Detection Methods

- Methods without a learning assumption:³ use simple statistics about past answers without modeling the learning process. e.g., N Consecutive Correct (NCC).
- <u>Methods based on learner models</u>: estimate a learner's knowledge and predict the probability of their next answer being correct or not: Bayesian Knowledge Tracing (BKT)⁴ or Latent Models (IRT).⁵

³ Pelánek, R., & Řihák, J. (2017, July). Experimental analysis of mastery learning criteria. In *Proceedings of the 25th Conference on* User Modeling, Adaptation and Personalization (pp. 156-163).

⁴ Albert T Corbe and John R Anderson. 1994. Knowledge tracing: Modeling the acquisition of procedural knowledge. User modeling and user-adapted interaction 4, 4 (1994), 253-278.

⁵ Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. 2009. Performance Factors Analysis–A New Alternative to Knowledge Tracing. Online Submission (2009)

Optimization objectives: Expected Performance

• is based on **previous** real **performances** of the learner.

$$exPerf(l, t) = sim(t, l.S)$$

• **Insight:** optimizing the expected performance only narrows the learner into the **Boredom Zone** with under challenging tests.

Optimization objectives: Aptitude

• represents the learner's **progression ability** when completing a test.

$$apt(l,t) = d_t - l.s$$

• Insights:

- optimizing aptitude only narrows the learner into the Frustration **Zone** with over-challenging tests.
- optimizing both aptitude and expected performance permit to assign tests from the **Comfort** (Flow) and **Learnable Zones**.

sk

Optimization objectives: Gap

• represents the **distance** of each test to the **m last** tests that were incorrectly completed in previous steps.

$$gap(l,t) = dist(t,l)$$

AdUp Multi-Objective Optimization Problem

• Given a learner *I* with an initial mastery level *sk*, a set of previously completed tests **P**, find a batch **B** of **k** tests to assign to **I** s.t.:

$$maximize \sum_{t \in B} exPerf(maximize \sum_{t \in B} apt(l, t))$$

$$minimize \sum_{t \in B} gap(l, t)$$

 Our solution relies on a Hill Climbing heuristic that finds the Pareto solutions. by optimizing all objectives at **once**.

- (l,t)

Experiments

- A learner attains mastery if their level cannot be further improved.
- We use a real world czech mathematics dataset intended for kids⁶ from which we inferred 42 distinct difficulties.

⁶<u>https://github.com/adaptive-learning/matmat-web/blob/master/data/data_description.md</u>

Experiments skill progression

ALTERNATE

Experiments % mastery and # iterations

Summary of results

Optimizing expected performance only narrows the learner into the Boredom Zone with under challenging tests.

Optimizing aptitude only narrows the learner into the Frustration Zone with over-challenging tests.

Optimizing **both aptitude and expected performance** permit to assign tests from the Comfort (Flow) and Learnable Zones.

Optimizing all three objectives outperforms single and bi-objective variants as well as alternating difficulty levels.

Conclusion

- Proposed a problem formalization that combines mastery learning with **upskilling theories**.
- Results showed that the solution that optimizes **all objectives** is **best** as it outperforms other variants.

Future

- Apply Reinforcement Learning to solve our problem.
- Applications to SQL learning by determining difficulty levels of individual tests more finely.