SQL.:
A Trojan horse hiding a decathlon of complexities

ACM SIGMOD DataEd 2023

Toni Taipalus
University of Jyvaskyld, Finland

toni.taipalus@jyu.fi



How complexities are hidden

SQL is a relatively easy language to learn. Very similarly structured to the English language, SQL can be
understood quite quickly by many people. It's an elegant solution to searching for data in structured
databases.

codecademy.com

SQAL is intuitive, practical, and easy to use. Even with no background in technology, you
can master the fundamentals of the language. SQL uses a syntax that is very similar to
English, which means that learning SQL is a smooth process.

careerkarma.com

Because SQL is a relatively simple language, learners can expect to become familiar with the basics
within two to three weeks. That said, if you're planning on using SQL skills at work, you'll probably
need a higher level of fluency.

bootcamp.berkeley.edu

Since 1863. | June2023 |




How complexities are hidden

« Theory behind relational databases has solid mathematical foundations.
 Implementations are mature.

« A domain-specific language used in simple environments.
* Query constructs, SQL syntax, etc. appear simple.

« Effectively a part of every higher education computing curricula.
 Abundance of textbooks, online tutorials, forum Q&A...




« Professionals have learned to work with (and around) the quirks of SQL.

« For a novice, each discrepancy, strange convention, etc. is a complexity.




The underlying principles




1. the role of relational theory

« Exceptionally well-defined:
— Formal definitions of data structures (the relational model)
— Formal definitions of operations (set theory operations)
— Formal definitions of design principles (normalization theory)

Since 1863. | June2023 |




1. the role of relational theory

Yes, but




Yes, but

1. the role of relational theory

 Normalization is complex. -,
P transitional dependency  the complexity of business domains

key attribute primary key (true) subsets and (true) supersets ;11 functional dependency

normal forms Armstrong's axioms set theory functional dependency

join dependency candidatekey  ulti-valued dependency superkey
trivial and nontrivial dependency

'what was that boycott normal form again and what are we boycotting?"

 Normalization is applied to various degrees or not applied at all.
« The Standard defines (and RDBMSs implement) non-atomic data types.

Since 1863. | June2023 |



2. data demand agnosticism

* Follow normalization theory, and the database can satisfy effectively any
demand for data, given that you have that data in your database.




2. data demand agnosticism

Yes, but




Yes, but

2. data demand agnosticism

PostgreSQL (SQL) Cassandra (CQL)

SELECT * SELECT *

FROM orders; FROM orders;

SELECT c.* SELECT *

FROM customers cC FROM customers_with_orders;
JOIN orders o ON (c.id = o.cust_id);

SELECT c.* SELECT *

FROM customers c FROM this_year_cust_with_toasters;
JOIN orders o ON (c.id = o.cust_id)

JOIN order_lines ol ON (o.line_id = ol.1id)

JOIN products p ON (ol.prod_id = p.id)

WHERE EXTRACT(YEAR FROM o.order_date) = 2023

AND p.itemname ILIKE '%toaster%';

SELECT c.* SELECT *
FROM customers c FROM this_year_cust_with_<snip>
WHERE EXISTS 100_toasters_but_no_laptops;
(SELECT *
Since 1863. | June2023 |

FROM orders o



3. sets and operations

« To the degree set theory is used in SQL, the operations are intuitive.

which elements belong to both sets? which elements that are part of the left set
are not present in the right set?

strawberry

/,” ~~\\
,/ strawberry N
\
kiwi

kiwi

orange

N-_——’

1 V4
cloudberry \ ’
orange [\ CloudberrV //
A S
\~ -~y = ’,

Since 1863. | June2023 |



3. sets and operations

« To the degree set theory is used in SQL, the operations are intuitive.

which elements belong to both sets? which elements that are part of the left set
are not present in the right set?

Since 1863. | June2023 |



3. sets and operations

Yes, but

Since 1863. | June2023 |




Yes, but

3. sets and operations

Trea, .. query these intersections, please
(requires 7 tables and 6 joins)

Since 1863. | June2023 |



The language

Since 1863. | June2023 |




4. imperative or declarative

 What versus how.
« SQLs syntax is simple and looks like English.
« Declarative nature sounds user-friendly, accessible and high-level.

SELECT surnhame Select the surnames
FROM students of students
WHERE age > 20; who are older than 20 years.




4. imperative or declarative

Yes, but

Since 1863. | June 2023




Yes, but

4. imperative or declarative

WITH prices AS (
SELECT EXTRACT(MONTH FROM orderdate) AS month
, EXTRACT(YEAR FROM orderdate) AS year
, SUM(totalprice) AS price
FROM orders
GROUP BY month, year

) Select the sums and
SELECT prices.year the cumulative sums of prices
, prices.month of ordered products

, prices.price
, SUM(prices.price) OVER (
PARTITION BY year
ORDER BY month
) AS price_cumulative
FROM prices
ORDER BY year ASC, month ASC;

yearly and monthly.

) . 5
clarative 15 this?

How de

Since 1863. | June2023 |




5.a myriad of choices

« Operators to ease some arduous query constructs
— IN, BETWEEN, OVERLAPS, etc.

« Multiple alternatives for joining tables
— JOIN, IN, EXISTS, etc.

« Different approaches to complex query constructs
— GROUP BY + HAVING instead of NOT EXISTS + NOT EXISTS, etc.

SELECT DISTINCT X.A

FROM T1 AS X
WHERE NOT EXISTS SELECT A
(SELECT * FROM T1
FROM T2 y WHERE B IN (SELECT B FROM T2)
WHERE NOT EXISTS GROUP BY A
(SELECT * HAVING COUNT(*) =
FroM 11 AS 2 (SELECT COUNT (*) FROM T2): [MG02]

WHERE (z.A=x.A) AND (z.B=y.B)));

Since 1863. | June2023 |




5.a myriad of choices

Yes, but




Yes, but

5.a myriad of choices

« The different ways of writing queries are not always interchangeable.

« Joins with IN and EXISTS behave differently when NULLs are present.
« Where do I put the expressions when I use JOINS?

« When must I use a subquery?
« When can’t I use a subquery?




6. strange conventions

« SQL is a high-level language with little syntactical padding.
« Again, SQL statements look a lot like English.




6. strange conventions

Yes, but

Since 1863. | June2023 |




Yes, but

6. strange conventions

SELECT name
FROM products \Why SELECT name
WHERE price = this / FROM products
(SELECT MAX(price) and not this? WHERE price = MAX(price);
FROM products);

SELECT color, COUNT(*) t{fis SELECT a, b, c, d, AVG(e)
FROM products must always be followed by FROM products
— this, —
GROUP BY color; Whvmftlwrite GROUP BY a, b, c, d;
this

at all?

Since 1863. | June2023 |




7. three-valued logic

« (NULL)equals (NULL)
« (NOT NULL) equals (NULL)
e (price=NULL)equals (NULL)

P_____1Q _____|PANDQ PORQ

True True True True
True False False True
False False False False
True Unknown Unknown True

False Unknown  False Unknown




7. three-valued logic

Yes, but

Since 1863. | June2023 |




Yes, but

/. three-valued logic

1 10
S 2 NULL
O, 3 10

— SUM(price) must be NULL (it isn't).
— AVG(price) must be NULL (it isn't).
— MIN(price) must be NULL (it isn't)...

« Three-valued logic is not suited for relational databases [ru07, Daos).
— We need a separate operator (IS)...
— ...and functions (COALESCE, NULLIF) to check for NULLs.
— GROUP BY groups NULLs to the same group.
— Aggregate functions disregard NULLs.
— Joins (JOIN, EXISTS) operate using two-valued logic...

Since 1863. | June2023 |




The environments




8. dialects

 The SQL Standard makes the language portable across different systems.




8. dialects

Yes, but

Since 1863. | June2023 |




Yes, but

8. dialects

SELECT *

FROM reservations Does not work in MySQL
WHERE (start_time, end_time) OVERLAPS (:start, :end);

.. .FOREIGN KEY (cust_id) REFERENCES customers (id)

ON UPDATE CASCADE Does not work in Oracle Database
ON DELETE CASCADE;

FULL OUTER JOIN customers ON (cust_id ... Does not work in SQLite

.. .WHERE EXTRACT(YEAR FROM start_time) = 2023; Does not work in SQL Server

SELECT nationality, COUNT(*)

FROM customers Does not work in PostgreSQL
GROUP BY 1d;

Since 1863. | June2023 |




9. error messages

« RDBMSs that implement SQL are mature, and
« developed by diverse teams of experts with hefty budgets.

« Human-computer interaction has come a long way since the 1970s.




9. error messages

Yes, but

Since 1863. | June2023 |




9. error messages

SELECT *

WHERE EXISTS
(SELECT *
FROM orders o
WHERE c.id = o.cust_1id
ORDER BY o.cust_id);

ORA-00907: missing right parenthesis

¢

ORA-00907: missing right parenthesis

[Ta23]

cu
rror o€
FROM customers cC b N\e%\
jsion v

Oracle 7i
(1992)

Oracle 23c
(2023)

-- C

WITH

\I
)
--C

, st

\
)
/s
-- C

> P8

\I
/

-- e
, ex

FROM
ORDE
LIMI

ustomers by product group:
pg AS (
SELECT p.groupname AS groupname
» COUNT{DISTINCT o.customerid) AS num_cust 13

FROM orders o Yes’ ut
RIGHT JOIN orderlines ol

OMN (o.orderid = ol.orderid)
LEFT JOIM products p

OM (ol.productid = p.productid)
GROUP BY 1

ustomers by state:
a AS (
SELECT o.state A5 state
» COUNT{DISTIMNCT o.customerid) AS num_cust
FROM orders o
GROUP BY 1

ustomers by product group and state:

_sta AS (

SELECT p.groupname AS groupname
, 0.state AS state
, COUNT{DISTINCT o.customerid) AS num_cust
FROM orders o
RIGHT JOIN orderlines ol
OM (o.orderid = ol.orderid)
LEFT JOIM products p
OM (ol.productid = p.productid)
GROUP BY 1, 2

xpected values:
p AS (
SELECT pg_sta.state
» pg_sta.groupname
» pg_sta.num_cust
,» pg.num_cust * sta.num_cust /
(SELECT COUNT{DISTINCT customerid)
FROM orders) AS expected
FROM pg_sta
LEFT OUTER JOIN sta
OM (pg_sta.state = sta.state)
LEFT QUTER JOIN pg
OM (pg_sta.groupname = pg.groupname)

hi square:
CT state

, Eroupname

, num_cust

, expected

-- chi square calculation:

, POWER({num_cust - expected, 2) / expected AS chisquare
exp

R BY chisquare DESC

T 16;

Since 1863. | June2023 |




10. lack of error messages

« RDBMSs have sophisticated compilers and query optimizers.




10. lack of error messages

Yes, but

Since 1863. | June2023 |




Yes, but

10. lack of error messages

SELECT fname, sname

FROM customers SELECT fname, sname
WHERE age > 20 AND age < 20; FROM customers

l WHERE age > 20 AND age < 20;

<EXPLAIN ANALYZE>

fname | sname

. 4
never executed filter (NULL IS NOT NULL) Impossible WHERE

PostgreSQL Oracle Database MySQL

Since 1863. | June2023 |



Pedagogical parting thoughts

« Relational model: first informally, then formally.
« Visualize queries pDG11, MF21, Ta191.
Do not treat SQL like a natural language.

« Teach one SQL dialect.
« Usea DBMS that

— tries to conform to SQL Standard and
— has (relatively) effective error messages [TG21].

Use an engaging exercise database [Tv23.




References and thank you

 References
— [DG11] Danaparamita & Gatterbauer (2011). QueryViz: Helping Users Understand SQL Queries and Their Patterns. EDBT'11.
— [Da08] Date (2008). A Critique of Claude Rubinson’s Paper Nulls, Three-Valued Logic, and Ambiguity in SQL: Critiquing Date’s Critique. SIGMOD Rec.
—  [MGO02] Matos & Grasser (2002). A Simpler (and Better) SQL Approach to Relational Division. JISE.
—  [MF21] Miedema & Fletcher (2021). SQLVis: Visual Query Representations for Supporting SQL Learners. VL/HCC'21.
—  [Ru07]Rubinson (2007). Nulls, Three-Valued Logic, and Ambiguity in SQL: Critiquing Date’s Critique. SIGMOD Rec.
— [Ta19] Taipalus (2019). A notation for planning SQL queries. JISE.
—  [Ta23] Taipalus (2023). Query execution plans and semantic errors: Usability and educational opportunities. ACM CHI'23.

—  [TG21] Taipalus, Grahn & Ghanbari (2021). Error messages in relational database management systems: a comparison of effectiveness, usefulness and user
confidence. JSS.

—  [TM23] Taipalus, Miedema & Aivaloglou (2023). Engaging databases for data systems education. ITiCSE'23.
—  "Yes, but" images from DALL -E, "Gustave Doré portrait style image of a confused [person/cat/dachshund/corgi/etc]."
— "Trojan horse" images from DALL ‘E, "A realistic painting of a trojan horse, with small silhouettes of people pointing at it in awe."

« Thank you

Since 1863. | June2023 |




	Slide 1: SQL: A Trojan horse hiding a decathlon of complexities
	Slide 2: How complexities are hidden
	Slide 3: How complexities are hidden
	Slide 4
	Slide 5: The underlying principles
	Slide 6: 1. the role of relational theory
	Slide 7: 1. the role of relational theory
	Slide 8: 1. the role of relational theory
	Slide 9: 2. data demand agnosticism
	Slide 10: 2. data demand agnosticism
	Slide 11: 2. data demand agnosticism
	Slide 12: 3. sets and operations
	Slide 13: 3. sets and operations
	Slide 14: 3. sets and operations
	Slide 15: 3. sets and operations
	Slide 16: The language
	Slide 17: 4. imperative or declarative
	Slide 18: 4. imperative or declarative
	Slide 19: 4. imperative or declarative
	Slide 20: 5. a myriad of choices
	Slide 21: 5. a myriad of choices
	Slide 22: 5. a myriad of choices
	Slide 23: 6. strange conventions
	Slide 24: 6. strange conventions
	Slide 25: 6. strange conventions
	Slide 26: 7. three-valued logic
	Slide 27: 7. three-valued logic
	Slide 28: 7. three-valued logic
	Slide 29: The environments
	Slide 30: 8. dialects
	Slide 31: 8. dialects
	Slide 32: 8. dialects
	Slide 33: 9. error messages
	Slide 34: 9. error messages
	Slide 35: 9. error messages
	Slide 36: 10. lack of error messages
	Slide 37: 10. lack of error messages
	Slide 38: 10. lack of error messages
	Slide 39: Pedagogical parting thoughts
	Slide 40: References and thank you

